NEWS

公司动态

IUPAC公布化学领域十大新兴技术,流动化学等入选

发布时间:2019-10-05  浏览:887


来源:化学科讯

2019年,对化学领域具有特殊意义。这一年,国际纯粹与应用化学联合会(International Union of Pure and Applied Chemistry,简称IUPAC)成立100周年。在成立100周年纪念日上,IUPAC首次公布了化学领域十大新兴技术名单:纳米农药、对映选择性有机催化、固态电池、流动化学、反应挤出、用于集水的MOFs和多孔材料、选择性酶的定向进化、从塑料到单体、自由基聚合反应的可逆失活和3D生物打印

文章信息

1、纳米农药

随着世界人口不断增长,到2050年,全球人口有可能达到100亿人。要养活这么多人,世界各国必须在保持作物可持续发展的同时,大幅提高农业产量,尽量减少土地使用对环境的影响、减少用水量、减轻化肥或杀虫剂等农用化学品的污染。而纳米技术的出现契合了这种发展需求,不出所料地吸引了大量制药和卫生行业的广泛关注。量身定制的“纳米输送系统”,由于很好解决了传统农药诸如环境污染、生物积累、害虫抗性大幅增加等问题,将成为农民植保作业一个有力工具。当然,关于纳米农药在田间地头的实际效果还待进一步评估,但这个技术应用前景毋容置疑。现阶段,加拿大有公司已获得美国环境保护局的批准,将纳米杀虫剂和杀菌剂进行商品化生产。纳米农药技术可能不是新型、可持续发展农业的唯一路径,但它肯定是一种对环境和人类健康的影响更小、更先进的农药,有可能将改变世界农业植保防治的发展方向。

2、对映选择性有机催化

化学家一直在向大自然学习���梦想找到一种催化剂,跟大多数天然酶一样不需要使用昂贵的金属。20世纪90年代后期,“有机催化”开始出现。最初,一些化学家批评有机催化不像它声称的那样绿色 - 它需要高催化剂负载,而且,反应后很难回收,这似乎违背了催化的定义。然而,Melchiorre指出研究人员如何克服大多数这些问题。他说有机催化的最初焦点是“开发新方法而不是降低催化剂负荷”。

然而,由于化学家了解降低催化剂用量可能产生的工业影响,他们只使用百万分之几的有机催化剂来制定手性碳 - 碳键的方法。“这仍然无法与金属相媲美,但成本要低得多,”他补充道。Melchiorre强调了有机催化如何种植化学领域并最终在其他领域发挥作用,尤其是光催化氧化催化,它允许新型转化:“[David] MacMillan创造了两个领域之间的联系。光活化使得醛类与烯胺的烷基化反应成为可能。这种反应不能用经典的有机催化方法完成。“许多其他领域已经从有机催化中出现,现在工业已经扩大了不对称有机催化方案,以合成精细化学品和药物。

3、固态电池

早在19世纪,电化学先驱迈克尔-法拉第就提出了固态电池的概念。然而,他们的发展直到最近才成为现实。现在,来自博世,戴森,丰田和英特尔等多个行业的重要行业正在投资数十亿美元。现在无处不在的锂离子电池的共同发明者John Goodenough最近公布了一种使用玻璃作为电解质的电池,证明固态电池比以往更接近市场。与为我们的智能手机,平板电脑和笔记本电脑供电的锂离子电池相比,固态电池更轻,允许更高的能量存储,并且在高温下表现良好。此外,与锂离子技术中使用的电解质不同,固态电解质不易燃,可能避免自发火灾和爆炸,就像几年前三星Galaxy Note 7推出的火焰一样。然而,新技术仍然非常昂贵。

4、流动化学

流动化学中的反应是在不断流动的过程中进行而不是批量生产,最终将处理有害物质和提高生产率的风险降至最低,同时防止危害并降低对环境的影响。虽然有些人认为流动化学处于非常早期的小规模实验室阶段,但高效的工业应用越来越普遍。

早在2015年,麻省理工学院的化学家就证明了流动化学的潜力,可以创造出经典批次技术难以实现的定制聚合物。据该领域的专家介绍,流程更快,更简单,更可靠,这与SDG目标非常一致。

最近的实例甚至已经显示出流动化学可以承受有害试剂如有机锂化合物的潜力。默克化学家实现了100千克规模的verubecestat前体合成,这是一种治疗阿尔茨海默病的III期候选药物。最近的其他实例包括环丙沙星(一种必需的抗生素)的流动合成,以及由辉瑞公司开发的自动流动系统,该系统能够每天分析多达1500个反应条件(点击查看:颠覆有机合成"人海战术",辉瑞新技术每天筛选1500次反应),加速了新药和现有药物的最佳合成途径的发现。

5、反应挤出

随着流动化学的发生,反应挤出成为一种允许化学反应完全无溶剂化的技术。消除潜在有毒溶剂使该过程对环境友好。然而,它产生了许多工程挑战,因为它需要对现有的工业流程进行全面的重新设计。尽管挤出工艺已被聚合物和材料专家广泛使用和研究,但在制备有机化合物方面还不够成熟。化学家们使用球磨机已经制备了氨基酸,腙,硝酮和肽 ,并且已经实现了一些非常经典的有机反应 - suzuki偶联,点击化学, 但是在聚合物之外的反应挤���条件下的实例仍然难以捉摸。生物技术公司Amgen报道了优化的共晶合成,可用于治疗慢性疼痛,这也是机械化学合成的第一个例子,可扩大到数百克。此外,英国的科学家们已经使用反应性挤出来有效地制备深低共熔溶剂, 一类可能成为新一代绿色,非易燃溶剂的离子液体。前面的两个例子都涉及分子内相互作用的形成,但不是新共价键的产生。然而,化学家们最近报道了金属有机骨架(MOFs)的形成和螺杆挤出的离散金属配合物,为更清洁,更可持续的无溶剂化学开辟了新的可能性。

6、用于集水的MOF和多孔材料

据联合国(UN)称,水资源短缺影响了全球40%以上的人口,并且预计会增加。化学可以为这个问题带来解决方案,特别是金属有机框架(MOF)。像MOF这样的多孔材料具有海绵状化学结构,具有微观空间,可以选择性地捕获分子,从气体 - 氢气,甲烷,二氧化碳,水 - 到更复杂的物质,如药物和酶。虽然一些研究人员专注于MOF在药物输送和气体净化中的应用,但Omar Yaghi偶然发现了它们从大气中捕获水的巨大潜力。“当我们研究将燃烧后气体吸收到MOF中时,我们注意到一些MOF与水分子发生了独特的相互作用,”Yaghi解释道。然后,他们想知道是否有相同的材料“可以”用于在干旱气候中从大气中捕获水分,然后很容易被释放用于收集。“这种技术是独一无二的,因为它可以从干燥的沙漠空气中获取可饮用量的纯净水,除了自然阳光之外不需要能量,”Yaghi说。最近报道的模拟仙人掌刺结构的仿生多孔表面只需一公斤的MOF就能在湿度低至20%的情况下每天收获2.8升水。

利用MOF从沙漠空气中获取大量饮用水

7、选择性酶的定向进化

酶的定向进化获得了2018年诺贝尔化学奖。通过定向进化产生的酶用于制造从生物燃料到药物的所有物质。“定向进化需要对数万种变体进行实验测试,[最终]提供高活性酶,”SílviaOsuna解释说,他通过先进的计算方法研究酶。她认为,与实验中人工进化的天然酶和酶相比,通过合理设计产生的最活跃的酶“仍然表现得相当差。”根据Osuna的说法,关于定向进化的最有趣的事实是“突变[是]远离酶活性位点对酶催化活性产生巨大影响。“

只有通过分析人工进化的酶,我们才能学会这一点。她通过计算研究酶的领域可能是识别类似趋势的关键,从而更好地理解定向进化。“计算是众多工具之一,加上蛋白质工程的进步,基因合成,序列分析和生物信息学,这将有助于我们化学家制作更集中的[酶]库,”她总结道。

定向进化的局限性尚待发现。在她最近的论文中,阿诺德使用定向进化“破解”植物酶细胞色素P450。现在,它们可以很容易地将碳 - 氢键转化为更复杂的不对称碳 - 碳键。

8、从塑料到单体

“循环经济无疑是目标,”Tanja Junkers说。化学家应该再次受到大自然的启发。在那里,“一切都被重复使用,我们应该对我们的合成材料做同样的事情。”这种策略将一举两得,“它将解决长期可回收性的问题,并且[需要]找到合适的主要[聚合物]构件的来源。“

一些聚合物,如聚乳酸(PLA),只需使用热量就可以很容易地再循环到它们的单体中。其他如聚对苯二甲酸乙二醇酯(PET)可以类似地分解成它们最基本的单元。首先,用乙二醇处理聚合物,乙二醇将长聚合物链断裂成低聚物。这些较小的碎片在较低温度下熔化,因此可以过滤以除去任何杂质。然后,一旦材料被净化,它就完全分解成单体,然后通过蒸馏再次纯化。

除了经典化学之外,就像阿诺德先前提到的酶促转化方法一样,一些细菌已经进化,这样它们也可以将PET分解成碎片。有时塑料是碳的唯一来源,如果你想生存,你需要适应。至少有一种Nocardia具有可破坏PET中酯键的酯酶,最近,日本研究人员发现了Ideonella sakaiensis,这种细菌可以在六周内分解PET塑料薄膜,这归功于两种不同的酶。然而,回收是昂贵的,“塑料世界的利润率很低,每一分钱都很重要,”容克斯说。化学家们正在寻找更便宜的循环经济选择。此外,随着石油变得不那么丰富,塑料的价格会慢慢上涨。但是,除此之外,我们必须提高认识,清洁塑料可能更昂贵,但值得。“社会必须愿意为更可持续的选择支付更高的价格,”容克斯总结道。

9、自由基聚合的可逆失活

“自由基聚合反应失活(RDRP)是二十多年前发明的,它彻底改变了聚合物世界,”Junkers解释道。“这些方法都依赖于对其他几乎无法控制的链式反应实施控制的机制,使我们能够设计出与自然界正在接近的精确度的聚合物,”她说。RDRP聚合物已在各种领域中得到应用:建筑,印刷,能源,汽车,航空航天和生物医学设备只是其中的一些例子。“大多数时候,我们使用这些聚合物却没有意识到这一点,”容克斯说。RDRP已成为工业化学家非常强大和有用的工具。

但仍有很大的发展空间,特别是寻找更环保的聚合解决方案。现在有许多方法只使用光来控制RDRP过程,即使不需要使用金属。近年来,化学家们还开发了RDRP方法,这些方法可用于流动系统,这将使它们朝着更加绿色的聚合物和塑料合成方向发展。

最后,化学家们还掌握了在水性介质中起作用的聚合过程,避免使用挥发性或有害溶剂。最近的进展使他们能够在几分钟内在水中获得超高分子量聚合物,同时保持对聚合物支化的精细控制。这些过程中的一些可以使用非常低能量的光源,在某些情况下甚至只是阳光。尽管是一种成熟的技术,我们可以肯定RDRP方法将继续创新,产生更广泛的商业成功。

10、三维生物打印

生物打印是当今最有前途的技术之一。使用由活细胞以及生物材料和生长因子制成的3D打印机和墨水,化学家和生物学家已经设法制造出与其天然版本几乎无法区分的人造组织和器官。3D生物打印可以彻底改变诊断和治疗,因为人工组织和器官可以很容易地用于药物筛选和毒理学研究。这项技术甚至可以为不需要捐赠者的理想移植创造组织和器官。目前,科学家们已经可以对管状组织(心脏,尿道,血管),粘性器官(胰腺)和固体系统(骨骼)进行3D打印。最近,剑桥研究人员甚至设法对视网膜进行三维打印,仔细沉积不同类型的活细胞层,以产生一种在结构上类似于原生眼组织的构造。

化学在这个非常复杂的过程的所有步骤中起着核心作用。首先,需要“扫描”器官和组织以便具有计算模型。这是通过使用诸如计算机断层扫描(CT)扫描和磁共振成像(MRI)的成像技术来完成的,这两者通常都需要化学造影剂,例如钆染料。然后,生物打印本身需要无数的化学物质来稳定生物墨水,触发细胞的组装,或充当印刷组织的支架。

最后,3D生物打印的对象需要随着时间的推��保持其结构和形式,这是一个需要物理和化学刺激的过程。而且,就像在任何移植或手术中一样,身体总是存在拒绝印刷组织的风险。了解细胞 - 细胞识别的化学反应,主要是由以糖脂和糖蛋白形式包裹膜的糖来控制,是减少排斥反应的关键。化学作为高度复杂的3D生物打印背后的所有交叉学科的中心,将是这种边缘技术的进一步发展的关键,据一些专家说,甚至可以建立比现有生物学更好的新器官。

凭借“化学十大新兴技术”计划,IUPAC不仅庆祝其过去100年,而且还展望了化学的未来。这些进步中的每一项都具有确保我们社会福祉和地球可持续性的巨大潜力。因此,IUPAC将继续在化学国际的未来版本中展示这些新兴的化学,材料和工程技术。我们的目标是促进和突出化学在日常生活中无处不在的贡献,并激励新一代年轻科学家无畏地接受我们所面临的挑战,使他们能够通过研究,创业和创造力找到解决方案。

化学创新将推动实现可持续发展目标的变革,并最终实现IUPAC的使命 - 应用和传播化学知识,为人类和世界带来最大利益。

以上内容为机器翻译,有较多错误之处,仅供参考,完整内容请点击下方阅读原文查看原文:

https://iupac.org/iupac-announces-the-top-ten-emerging-technologies-in-chemistry/

https://www.degruyter.com/view/j/ci.2019.41.issue-2/ci-2019-0203/ci-2019-0203.xml

(以上图文来自网络搜索,如有侵权,请联系删除)


下一页:第四届制药工艺论坛,让我们在上海共话微化工
上一页:恭贺“2020第四届微化工技术研究与行业应用及工艺优化工程设计研讨会”圆满落幕
在线联系
15821173881

微信公众号